Name_____

Like Terms & the Basics of Polynomials

Warm-up Problems

1. Fill in the blanks:

$$8,943 = \underline{\hspace{1cm}} \times 1000 + \underline{\hspace{1cm}} \times 100 + \underline{\hspace{1cm}} \times 10 + \underline{\hspace{1cm}} \times 1$$

$$= \underline{\hspace{1cm}} \times 10^3 + \underline{\hspace{1cm}} \times 10^2 + \underline{\hspace{1cm}} \times 10 + \underline{\hspace{1cm}} \times 1$$

2. Fill in the blanks:

$$8,943 = \underline{\hspace{1cm}} \times 20^3 + \underline{\hspace{1cm}} \times 20^2 + \underline{\hspace{1cm}} \times 20 + \underline{\hspace{1cm}} \times 1$$

3. Gisella computed 342×23 as follows:

Can you explain what she is doing? What is her final answer?

Like Terms & the basics of Polynomials

Lesson Summary
A <i>monomial</i> is a polynomial expression generated using only the multiplication operator (×). Thus, it does not contain + or – operators. Monomials are written with numerical factors multiplied together and variable or other symbols each occurring one time (using integer exponents to condense multiple instances of the same variable)
Examples:
A <i>polynomial</i> is the sum (or difference) of monomials.
Examples:
The <i>degree</i> of a monomial is the sum of the exponents of the variable symbols that appear in the monomial.
Examples:
The <i>degree</i> of a polynomial is the degree of the monomial term with the highest degree. Examples:
Examples.
To simiplify a polynomial, distribute and combine like terms (terms with same variable expressions).
Examples:

Lesson 9:

Date:

Name_____

Classwork Problems

- 1. Celina says that each of the following expressions is actually a binomial in disguise:
 - i. $5abc 2a^2 + 6abc$

ii.
$$5x^3 \cdot 2x^2 - 10x^4 + 3x^5 + 3x \cdot (-2)x^4$$

iii.
$$(t+2)^2-4t$$

iv.
$$5(a-1) - 10(a-1) + 100(a-1)$$

v.
$$(2\pi r - \pi r^2)r - (2\pi r - \pi r^2) \cdot 2r$$

For example, she sees that the expression in (i) is algebraically equivalent to $11abc - 2a^2$, which is indeed a binomial. (She is happy to write this as $11abc + (-2)a^2$, if you prefer.)

Is she right about the remaining four expressions?

- 2. Janie writes a polynomial expression using only one variable, x, with degree 3. Max writes a polynomial expression using only one variable, x, with degree 7.
 - a. What can you determine about the degree of the sum of Janie and Max's polynomials?
 - b. What can you determine about the degree of the difference of Janie and Max's polynomials?
- 3. Suppose Janie writes a polynomial expression using only one variable, x, with degree of 5 and Max writes a polynomial expression using only one variable, x, with degree of 5.
 - a. What can you determine about the degree of the sum of Janie and Max's polynomials?
 - b. What can you determine about the degree of the difference of Janie and Max's polynomials?
- 4. The expression $10x^2 + 6x^3$ is the result of applying the distributive property to the expression $2x^2(5+x)$. It is also the result of the applying the distributive property to $2(5x^2 + 3x^3)$ or to $x(10x + 6x^2)$, for example, or even to $1 \cdot (10x^2 + 6x^3)$!

For (i) to (x) below, write down an expression such that if you applied the distributive property to your expression it will give the result presented. Give interesting answers!

i.
$$6a + 14a^2$$

ii.
$$2x^4 + 2x^5 + 2x^{10}$$

iii.
$$6z^2 - 15z$$

iv.
$$z^2(a+b) + z^3(a+b)$$

v.
$$\frac{3}{2}s^2 + \frac{1}{2}$$

vi.
$$15p^3r^4 - 6p^2r^5 + 9p^4r^2 + 3\sqrt{2}p^3r^6$$

vii.
$$(4x + 3)(x^2 + x^3) - (2x + 2)(x^2 + x^3)$$

- 5. Sammy wrote a polynomial using only one variable, x, of degree 3. Myisha wrote a polynomial in the same variable of degree 5. What can you say about the degree of the product of Sammy and Myisha's polynomials?
- 6. Find a polynomial that, when multiplied by $2x^2 + 3x + 1$, gives the answer $2x^3 + x^2 2x 1$.

Name_____

Skills Practice

1. Find each sum or difference by combining the parts that are alike.

a.
$$(2p+4)+5(p-1)-(p+7)$$

b.
$$(7x^4 + 9x) - 2(x^4 + 13)$$

c.
$$(6-t-t^4)+(9t+t^4)$$

d.
$$(5-t^2)+6(t^2-8)-(t^2+12)$$

e.
$$(8x^3 + 5x) - 3(x^3 + 2)$$

f.
$$(12x + 1) + 2(x - 4) - (x - 15)$$

g.
$$(13x^2 + 5x) - 2(x^2 + 1)$$

h.
$$(9-t-t^2)-\frac{3}{2}(8t+2t^2)$$

i.
$$(4m+6)-12(m-3)+(m+2)$$

Name

2. Use the distributive property to write each of the following expressions as the sum of monomials.

a.
$$3a(4+a)$$

b.
$$x(x+2) + 1$$

c.
$$\frac{1}{3}(12z + 18z^2)$$

d.
$$4x(x^3 - 10)$$

e.
$$(x-4)(x+5)$$

f.
$$(2z-1)(3z^2+1)$$

g.
$$(10w - 1)(10w + 1)$$

h.
$$(-5w - 3)w^2$$

Name_____

Challenges

$$3xz(9xy+z) - 2yz(x+y-z)$$

$$(t-1)(t+1)(t^2+1)$$