(25) $h(x)=\frac{x}{x-1}$

$$
\begin{gathered}
h^{-1}(x)=x=\frac{y}{y-1} \\
x(y-1)=y \\
x y-x=y \\
x y=y+x
\end{gathered}
$$

$x y-y=x \longleftarrow$ What do you notice?

$$
\begin{gathered}
y(x-1)=x \\
y=\frac{x}{x-1} \\
h^{-1}(x)=\frac{x}{x-1}
\end{gathered}
$$

* Note inverse is the same as the original function.
Think back to section on reflections and symmetry. If inverse = original function, then the graph has a line of symmetry about the line $y=x$.
(16) see graph

Inverse of $f(x)=\sqrt{5-x}$ is a function.
\rightarrow Graph of $f(x)$ passes horizontal line test

$$
\begin{aligned}
f^{-1}(x)= & x=\sqrt{5-y} \\
x^{2} & =5-y \\
y+x^{2} & =5 \\
y & =5-x^{2}
\end{aligned}
$$

Domain of $f^{-1}(x)$ is the RANGE of $f(x)$

$$
\begin{aligned}
& f(x)=\sqrt{5-x} \quad \text { Range }=y \geq 0 \quad \text { (see graph) } \\
& \text { Domain }=5
\end{aligned}
$$

Becomes DOMAIN of $f^{-1}(x) \rightarrow x \geq 0$
Algebraic proof that $f^{-1}(x)$ is inverse of $f(x)$

$$
\begin{aligned}
& f\left(f^{-1}(x)\right)=f^{-1}(f(x))=\alpha \\
& f\left(5-x^{2}\right)=f^{-1}(\sqrt{5-x})=x \\
& \sqrt{5\left(5-x^{2}\right)}=5-(\sqrt{5-x})^{2}=x \\
& \sqrt{5-5+x^{2}}=5-(5-x)=x \\
& \sqrt{\alpha^{2}}=5-5+x=x \\
& x=x=x
\end{aligned}
$$

